Learning the Solution to the Aperture Problem for Pattern Motion with a Hebb Rule
نویسنده
چکیده
The primate visual system learns to recognize the true direction of pattern motion using local detectors only capable of detecting the component of motion perpendicular to the orientation of the moving edge. A multilayer feedforward network model similar to Linsker's model was presented with input patterns each consisting of randomly oriented contours moving in a particular direction. Input layer units are granted component direction and speed tuning curves similar to those recorded from neurons in primate visual area VI that project to area MT. The network is trained on many such patterns until most weights saturate. A proportion of the units in the second layer solve the aperture problem (e.g., show the same direction-tuning curve peak to plaids as to gratings), resembling pattern-direction selective neurons, which ftrst appear inareaMT.
منابع مشابه
Learning to See Rotation and Dilation with a Hebb Rule
Previous work (M.I. Sereno, 1989; cf. M.E. Sereno, 1987) showed that a feedforward network with area V1-like input-layer units and a Hebb rule can develop area MT-like second layer units that solve the aperture problem for pattern motion. The present study extends this earlier work to more complex motions. Saito et al. (1986) showed that neurons with large receptive fields in macaque visual are...
متن کاملNEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS
Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...
متن کاملAnti-Hebbian synapses as a linear equation solver
It is well-known that Hebbian synapses, with appropriate weight normalization, extract the first principal component of the input patterns (Oja 1982). Anti-Hebb rules have been used in combination with Hebb rules to extract additional principal components or generate sparse codes (e.g., Rubner and Schulten 1990; FoldiAk 1990). Here we show that the simple anti-Hebbian synapses alone can support...
متن کاملMMDT: Multi-Objective Memetic Rule Learning from Decision Tree
In this article, a Multi-Objective Memetic Algorithm (MA) for rule learning is proposed. Prediction accuracy and interpretation are two measures that conflict with each other. In this approach, we consider accuracy and interpretation of rules sets. Additionally, individual classifiers face other problems such as huge sizes, high dimensionality and imbalance classes’ distribution data sets. This...
متن کاملNear-Minimum-Time Motion Planning of Manipulators along Specified Path
The large amount of computation necessary for obtaining time optimal solution for moving a manipulator on specified path has made it impossible to introduce an on line time optimal control algorithm. Most of this computational burden is due to calculation of switching points. In this paper a learning algorithm is proposed for finding the switching points. The method, which can be used for both ...
متن کامل